\(\int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx\) [974]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 43 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {a^2 B \log (1-\sin (c+d x))}{d}+\frac {a^3 (A+B)}{d (a-a \sin (c+d x))} \]

[Out]

a^2*B*ln(1-sin(d*x+c))/d+a^3*(A+B)/d/(a-a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {2915, 45} \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {a^3 (A+B)}{d (a-a \sin (c+d x))}+\frac {a^2 B \log (1-\sin (c+d x))}{d} \]

[In]

Int[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]

[Out]

(a^2*B*Log[1 - Sin[c + d*x]])/d + (a^3*(A + B))/(d*(a - a*Sin[c + d*x]))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^3 \text {Subst}\left (\int \frac {A+\frac {B x}{a}}{(a-x)^2} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 \text {Subst}\left (\int \left (\frac {A+B}{(a-x)^2}-\frac {B}{a (a-x)}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^2 B \log (1-\sin (c+d x))}{d}+\frac {a^3 (A+B)}{d (a-a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.95 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {a^3 \left (\frac {B \log (1-\sin (c+d x))}{a}+\frac {A+B}{a-a \sin (c+d x)}\right )}{d} \]

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]

[Out]

(a^3*((B*Log[1 - Sin[c + d*x]])/a + (A + B)/(a - a*Sin[c + d*x])))/d

Maple [A] (verified)

Time = 0.36 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.74

method result size
parallelrisch \(-\frac {\left (B \left (\sin \left (d x +c \right )-1\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 B \left (\sin \left (d x +c \right )-1\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (A +B \right ) \sin \left (d x +c \right )\right ) a^{2}}{d \left (\sin \left (d x +c \right )-1\right )}\) \(75\)
risch \(-i x \,a^{2} B -\frac {2 i a^{2} B c}{d}-\frac {2 i a^{2} {\mathrm e}^{i \left (d x +c \right )} \left (A +B \right )}{d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{2}}+\frac {2 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{d}\) \(78\)
derivativedivides \(\frac {A \,a^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+\frac {A \,a^{2}}{\cos \left (d x +c \right )^{2}}+2 B \,a^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {B \,a^{2}}{2 \cos \left (d x +c \right )^{2}}}{d}\) \(189\)
default \(\frac {A \,a^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+\frac {A \,a^{2}}{\cos \left (d x +c \right )^{2}}+2 B \,a^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {B \,a^{2}}{2 \cos \left (d x +c \right )^{2}}}{d}\) \(189\)
norman \(\frac {-\frac {4 A \,a^{2}+4 B \,a^{2}}{d}-\frac {\left (4 A \,a^{2}+4 B \,a^{2}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 \left (10 A \,a^{2}+10 B \,a^{2}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 \left (10 A \,a^{2}+10 B \,a^{2}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{2} \left (A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {8 a^{2} \left (A +B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {12 a^{2} \left (A +B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {8 a^{2} \left (A +B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{2} \left (A +B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {2 B \,a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {B \,a^{2} \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(291\)

[In]

int(sec(d*x+c)^3*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(B*(sin(d*x+c)-1)*ln(sec(1/2*d*x+1/2*c)^2)-2*B*(sin(d*x+c)-1)*ln(tan(1/2*d*x+1/2*c)-1)+(A+B)*sin(d*x+c))*a^2/
d/(sin(d*x+c)-1)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.28 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=-\frac {{\left (A + B\right )} a^{2} - {\left (B a^{2} \sin \left (d x + c\right ) - B a^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{d \sin \left (d x + c\right ) - d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="fricas")

[Out]

-((A + B)*a^2 - (B*a^2*sin(d*x + c) - B*a^2)*log(-sin(d*x + c) + 1))/(d*sin(d*x + c) - d)

Sympy [F]

\[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=a^{2} \left (\int A \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 A \sin {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int A \sin ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \sin {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 B \sin ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \sin ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(sec(d*x+c)**3*(a+a*sin(d*x+c))**2*(A+B*sin(d*x+c)),x)

[Out]

a**2*(Integral(A*sec(c + d*x)**3, x) + Integral(2*A*sin(c + d*x)*sec(c + d*x)**3, x) + Integral(A*sin(c + d*x)
**2*sec(c + d*x)**3, x) + Integral(B*sin(c + d*x)*sec(c + d*x)**3, x) + Integral(2*B*sin(c + d*x)**2*sec(c + d
*x)**3, x) + Integral(B*sin(c + d*x)**3*sec(c + d*x)**3, x))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.86 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {B a^{2} \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {{\left (A + B\right )} a^{2}}{\sin \left (d x + c\right ) - 1}}{d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="maxima")

[Out]

(B*a^2*log(sin(d*x + c) - 1) - (A + B)*a^2/(sin(d*x + c) - 1))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 112 vs. \(2 (45) = 90\).

Time = 0.33 (sec) , antiderivative size = 112, normalized size of antiderivative = 2.60 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=-\frac {B a^{2} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 2 \, B a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {3 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 8 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B a^{2}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{2}}}{d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="giac")

[Out]

-(B*a^2*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 2*B*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (3*B*a^2*tan(1/2*d*x +
1/2*c)^2 - 2*A*a^2*tan(1/2*d*x + 1/2*c) - 8*B*a^2*tan(1/2*d*x + 1/2*c) + 3*B*a^2)/(tan(1/2*d*x + 1/2*c) - 1)^2
)/d

Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.02 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx=\frac {B\,a^2\,\ln \left (\sin \left (c+d\,x\right )-1\right )}{d}-\frac {A\,a^2+B\,a^2}{d\,\left (\sin \left (c+d\,x\right )-1\right )} \]

[In]

int(((A + B*sin(c + d*x))*(a + a*sin(c + d*x))^2)/cos(c + d*x)^3,x)

[Out]

(B*a^2*log(sin(c + d*x) - 1))/d - (A*a^2 + B*a^2)/(d*(sin(c + d*x) - 1))